Domain aibm.de kaufen?

Produkt zum Begriff Datenanalyse:


  • Datenanalyse mit R' Fortgeschrittene Verfahren
    Datenanalyse mit R' Fortgeschrittene Verfahren

    Dieses Buch erklärt, wie man mit R fortgeschrittene statistische Analysen durchführt. Die Techniken wurden dabei so ausgewählt, dass sie den Stoff im Masterstudiengang Psychologie und ähnlicher Studiengänge abdecken. In 10 eigenständigen Kapiteln werden die statistischen Verfahren anhand einführender und komplexer Datenbeispiele erläutert. Die Analyseergebnisse werden ausführlich interpretiert. Dabei legt das Buch besonderen Wert auf illustrative grafische Ergebnisdarstellungen. Auch die Voraussetzungen der Verfahren werden diskutiert und, soweit möglich, in R geprüft. Zu jedem Kapitel stehen Datendateien und ein R Script zur Verfügung, damit die Analyse schnell und unkompliziert nachvollzogen werden kann. Das Buch setzt Grundkenntnisse in R voraus und gibt ergänzende Literatur für die theoretischen Grundlagen und die Vertiefung für die fortgeschrittene Datenanalyse an. 

    Preis: 27.99 € | Versand*: 0 €
  • Datenanalyse mit Python (McKinney, Wes)
    Datenanalyse mit Python (McKinney, Wes)

    Datenanalyse mit Python , Die erste Adresse für die Analyse von Daten mit Python Das Standardwerk in der 3. Auflage, aktualisiert auf Python 3.10 und pandas 1.4 Versorgt Sie mit allen praktischen Details und mit wertvollem Insiderwissen, um Datenanalysen mit Python erfolgreich durchzuführen Mit Jupyter-Notebooks für alle Codebeispiele aus jedem Kapitel Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.10 und pandas 1.4, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy und Jupyter kennen. Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und Zusatzmaterial zum Buch sind auf GitHub verfügbar. Aus dem Inhalt: Nutzen Sie Jupyter Notebook und die IPython-Shell für das explorative Computing Lernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennen Setzen Sie die Datenanalyse-Tools der pandas-Bibliothek ein Verwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von Daten Erstellen Sie interformative Visualisierungen mit matplotlib Wenden Sie die GroupBy-Mechanismen von pandas an, um Datensätze zurechtzuschneiden, umzugestalten und zusammenzufassen Analysieren und manipulieren Sie verschiedenste Zeitreihendaten Erproben Sie die konkrete Anwendung der im Buch vorgestellten Werkzeuge anhand verschiedener realer Datensätze , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Auflage: 3. Auflage, Erscheinungsjahr: 20230302, Produktform: Kartoniert, Titel der Reihe: Animals##, Autoren: McKinney, Wes, Übersetzung: Lichtenberg, Kathrin~Demmig, Thomas, Auflage: 23003, Auflage/Ausgabe: 3. Auflage, Seitenzahl/Blattzahl: 556, Keyword: Big Data; Data Mining; Data Science; IPython; Jupyter; Jupyter notebook; NumPy; Python 3.10; matplotlib; pandas 1.4, Fachschema: Data Mining (EDV)~Analyse / Datenanalyse~Datenanalyse~Datenverarbeitung / Simulation~Informatik~Informationsverarbeitung (EDV)~Internet / Programmierung~Programmiersprachen, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Warengruppe: HC/Programmiersprachen, Fachkategorie: Data Mining, Thema: Verstehen, Text Sprache: ger, Originalsprache: eng, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Dpunkt.Verlag GmbH, Verlag: Dpunkt.Verlag GmbH, Verlag: O'Reilly, Länge: 241, Breite: 168, Höhe: 35, Gewicht: 999, Produktform: Kartoniert, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Vorgänger: 2660049, Vorgänger EAN: 9783960090809 9783960090007 9783864903038 9783958750739, andere Sprache: 9781491957660, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0120, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,

    Preis: 44.90 € | Versand*: 0 €
  • Datenanalyse mit R' Beschreiben, Explorieren, Schätzen und Testen
    Datenanalyse mit R' Beschreiben, Explorieren, Schätzen und Testen

    Nach einer kurzen generellen Einführung in R wird ausführlich erläutert, wie Daten eingelesen und bearbeitet werden können. Danach erklärt das Buch Verfahren der deskriptiven und explorativen Statistik. Die Inferenzstatistik wird durch Ausprobieren und Simulationen eingeführt, gefolgt von einer ausführlichen Darstellung der gängigen inferenzstatistischen Verfahren. Den Abschluss machen die explorative Faktorenanalyse und die Clusteranalyse. Alle Verfahren werden den LeserInnen mittels zahlreicher Datensätze zur Verfügung gestellt, und jedes Kapitel demonstriert die Analysen anhand einfacher und komplexer Datenbeispiele aus dem Forschungsalltag. Nicht zu Unrecht ist R inzwischen in der sozialwissenschaftlichen Datenanalyse etabliert und manche neueren Verfahren stehen nur dort zur Verfügung. Die LeserInnen werden über das gesamte Buch hinweg immer wieder ermuntert, die Vielfalt und Flexibilität von R selbst auszuprobieren.

    Preis: 29.95 € | Versand*: 0 €
  • Datenanalyse mit R: Fortgeschrittene Verfahren (Burkhardt, Markus~Titz, Johannes~Sedlmeier, Peter)
    Datenanalyse mit R: Fortgeschrittene Verfahren (Burkhardt, Markus~Titz, Johannes~Sedlmeier, Peter)

    Datenanalyse mit R: Fortgeschrittene Verfahren , Dieses Buch erklärt ausgewählte Techniken der fortgeschrittenen Datenanalyse. In 10 eigenständigen Kapiteln werden dazu einführende und komplexe Datenbeispiele in R analysiert und interpretiert. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Erscheinungsjahr: 20220701, Produktform: Kartoniert, Titel der Reihe: Pearson Studium - Psychologie##, Autoren: Burkhardt, Markus~Titz, Johannes~Sedlmeier, Peter, Seitenzahl/Blattzahl: 304, Themenüberschrift: COMPUTERS / Mathematical & Statistical Software, Keyword: Datenanalyse Fortgeschrittene; Diagnostik; Methodik; R Programm; Statistik, Fachschema: Analyse / Datenanalyse~Datenanalyse~Psychologie / Forschung, Experimente, Methoden~Erforschung~Forschung~Datenverarbeitung / Anwendungen / Mathematik, Statistik, Fachkategorie: Psychologie~Wahrscheinlichkeitsrechnung und Statistik~Mathematische und statistische Software, Warengruppe: HC/Psychologie/Psychologische Ratgeber, Fachkategorie: Forschungsmethoden, allgemein, Thema: Verstehen, Text Sprache: ger, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Pearson Studium, Verlag: Pearson Studium, Verlag: Pearson Studium, Länge: 241, Breite: 173, Höhe: 17, Gewicht: 525, Produktform: Kartoniert, Genre: Geisteswissenschaften/Kunst/Musik, Genre: Geisteswissenschaften/Kunst/Musik, Herkunftsland: NIEDERLANDE (NL), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0004, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, WolkenId: 2781061

    Preis: 34.95 € | Versand*: 0 €
  • Wie kann Python als Programmiersprache in verschiedenen Bereichen wie Webentwicklung, Datenanalyse, künstliche Intelligenz und Automatisierung eingesetzt werden?

    Python kann in der Webentwicklung eingesetzt werden, indem es Frameworks wie Django oder Flask verwendet, um dynamische und leistungsstarke Webanwendungen zu erstellen. In der Datenanalyse kann Python Bibliotheken wie Pandas, NumPy und Matplotlib nutzen, um große Datenmengen zu verarbeiten, zu analysieren und zu visualisieren. Für künstliche Intelligenz kann Python Bibliotheken wie TensorFlow und Keras verwenden, um komplexe neuronale Netzwerke zu erstellen und zu trainieren. In der Automatisierung kann Python Skripte schreiben, um repetitive Aufgaben zu automatisieren, wie z.B. das Verschieben von Dateien, das Senden von E-Mails oder das Durchführen von Systemwartungen.

  • Wie kann die Speicherleistung von Computern und elektronischen Geräten verbessert werden, und welche Auswirkungen hat dies auf die Leistungsfähigkeit von Anwendungen in Bereichen wie künstliche Intelligenz, Datenanalyse und Cloud-Computing?

    Die Speicherleistung von Computern und elektronischen Geräten kann durch die Verwendung schnellerer und effizienterer Speichertechnologien wie SSDs und HBM verbessert werden. Dies ermöglicht eine schnellere Datenverarbeitung und -übertragung, was sich positiv auf die Leistungsfähigkeit von Anwendungen in Bereichen wie künstliche Intelligenz, Datenanalyse und Cloud-Computing auswirkt. Durch die Verbesserung der Speicherleistung können große Datenmengen schneller verarbeitet und analysiert werden, was zu einer verbesserten Leistungsfähigkeit und Effizienz in diesen Anwendungsbereichen führt. Darüber hinaus ermöglicht eine bessere Speicherleistung eine schnellere Bereitstellung von Daten und Anwendungen in der Cloud, was die Reaktionsfähigkeit und Skalierbarkeit von Cloud-Comput

  • Wie kann die Programmiersprache Python in den Bereichen der Webentwicklung, Datenanalyse und künstlichen Intelligenz eingesetzt werden?

    Python wird in der Webentwicklung eingesetzt, um dynamische Webseiten und Webanwendungen zu erstellen. Mit Frameworks wie Django und Flask können Entwickler schnell und effizient Webanwendungen erstellen. In der Datenanalyse wird Python aufgrund seiner umfangreichen Bibliotheken wie NumPy, Pandas und Matplotlib verwendet, um große Datenmengen zu verarbeiten, zu analysieren und zu visualisieren. Im Bereich der künstlichen Intelligenz wird Python aufgrund seiner einfachen Syntax und seiner umfangreichen Bibliotheken wie TensorFlow und Keras verwendet, um maschinelles Lernen, neuronale Netze und andere AI-Technologien zu implementieren. Durch seine Vielseitigkeit und die große Community wird Python in allen drei Bereichen häufig eingesetzt und ist eine der beliebtesten Programmiersprachen für Entwickler.

  • Wie kann die Effizienz im Vertrieb durch den Einsatz von Technologie und Datenanalyse verbessert werden?

    Durch den Einsatz von Technologie können Vertriebsmitarbeiter effizienter arbeiten, indem sie automatisierte Prozesse nutzen, um Zeit zu sparen und sich auf wichtige Aufgaben zu konzentrieren. Datenanalyse ermöglicht es, Kundenbedürfnisse und -verhalten besser zu verstehen, um maßgeschneiderte Verkaufsstrategien zu entwickeln und die Kundenbindung zu stärken. Die Nutzung von CRM-Systemen ermöglicht es, Kundeninformationen zentral zu verwalten und den Vertriebsmitarbeitern einen ganzheitlichen Überblick über ihre Kunden zu geben. Durch die Integration von Technologie und Datenanalyse können Vertriebsprozesse optimiert und die Effizienz gesteigert werden, was letztendlich zu einer Steigerung der Umsätze führen kann.

Ähnliche Suchbegriffe für Datenanalyse:


  • Steinberg Systems Schichtdickenmessgerät - 0 - 2000 μm - ±3 % + 1 μm - Datenanalyse SBS-TG-3000
    Steinberg Systems Schichtdickenmessgerät - 0 - 2000 μm - ±3 % + 1 μm - Datenanalyse SBS-TG-3000

    In Sekundenschnelle Lackschichten messen – mit dem Schichtdickenmessgerät von Steinberg Systems kein Problem! Das hochsensible Gerät ermittelt automatisch, wie stark verschiedene Schichten, wie etwa Farbe oder Kunststoffe, auf ferromagnetischen Metallen sind. Die vielen Funktionen und exakten Messergebnisse machen das Gerät zum Muss in jeder Autowerkstatt. Umfangreicher geht’s kaum: Das Lackmessgerät bietet neben verstellbarer Display-Helligkeit und Alarm-Lautstärke viele Funktionen: automatisch rotierende Anzeige und Abschaltung, Analysesoftware mit verschiedenen Darstellungen der Messwerte, verschiedene Modi sowie die Batterie-Warnanzeige. Die gemessenen Werte übertragen Sie per Bluetooth bequem auf den Rechner. Dank spezieller App behalten Sie den Überblick über die Daten. Der Lacktester verfügt zudem über eine integrierte, hochempfindliche Sonde. Diese misst auf ±3 % + 1 μm genau. Vor der Messung justieren Sie das Gerät schnell und einfach mittels Nullpunkt- oder Mehrpunktkalibrierung. Dazu verwenden Sie im besten Fall eine unbeschichtete Probe des Substrates, das Sie messen möchten. Alternativ eignet sich auch eine glatte Nullplatte. Mit dem Lackdicken-Messer prüfen Sie die Dicke nichtmagnetischer Schichten auf verschiedenen Oberflächen, beispielsweise auf Edelstahl, Eisen, Aluminium oder Kupfer. Dazu nutzt das Gerät die Wirbelstromprüfung. Diese ermöglicht Ihnen die zerstörungsfreie Messung mit einem hohen Messbereich von 0 - 2000 μm. Die Ergebnisse lesen Sie bequem auf dem klaren LCD ab.

    Preis: 109.00 € | Versand*: 0.00 €
  • Künstliche Intelligenz
    Künstliche Intelligenz

    Die dritte Auflage dieses Informatik-Klassikers wurde von Grund auf komplett überarbeitet und an die neuesten Entwicklungen der KI angepasst. Die Autoren verstehen es dabei, die KI in ihrem ganzen Themenspektrum für die Studierenden verständlich und nachvollziehbar dazustellen. Sie behandeln alle relevanten Aspekte der KI von der Logik und der Wahrscheinlichkeitstheorie über den Bereich des Wahrnehmens, Denkens, Lernens und Handelns bis zu mikroelektronischen Geräten und Robotern. Erweitert um moderne Such- und Sprachalgorithmen sowie Lernen mit neuronalen Netzen setzt diese Werk einen neuen Standard, den kein anderes Werk derzeit zu leisten vermag.

    Preis: 55.99 € | Versand*: 0 €
  • Datenanalyse mit R' Fortgeschrittene Verfahren
    Datenanalyse mit R' Fortgeschrittene Verfahren

    Dieses Buch erklärt, wie man mit R fortgeschrittene statistische Analysen durchführt. Die Techniken wurden dabei so ausgewählt, dass sie den Stoff im Masterstudiengang Psychologie und ähnlicher Studiengänge abdecken. In 10 eigenständigen Kapiteln werden die statistischen Verfahren anhand einführender und komplexer Datenbeispiele erläutert. Die Analyseergebnisse werden ausführlich interpretiert. Dabei legt das Buch besonderen Wert auf illustrative grafische Ergebnisdarstellungen. Auch die Voraussetzungen der Verfahren werden diskutiert und, soweit möglich, in R geprüft. Zu jedem Kapitel stehen Datendateien und ein R Script zur Verfügung, damit die Analyse schnell und unkompliziert nachvollzogen werden kann. Das Buch setzt Grundkenntnisse in R voraus und gibt ergänzende Literatur für die theoretischen Grundlagen und die Vertiefung für die fortgeschrittene Datenanalyse an. 

    Preis: 34.95 € | Versand*: 0 €
  • Datenanalyse mit R' Fortgeschrittene Verfahren
    Datenanalyse mit R' Fortgeschrittene Verfahren

    Dieses Buch erklärt, wie man mit R fortgeschrittene statistische Analysen durchführt. Die Techniken wurden dabei so ausgewählt, dass sie den Stoff im Masterstudiengang Psychologie und ähnlicher Studiengänge abdecken. In 10 eigenständigen Kapiteln werden die statistischen Verfahren anhand einführender und komplexer Datenbeispiele erläutert. Die Analyseergebnisse werden ausführlich interpretiert. Dabei legt das Buch besonderen Wert auf illustrative grafische Ergebnisdarstellungen. Auch die Voraussetzungen der Verfahren werden diskutiert und, soweit möglich, in R geprüft. Zu jedem Kapitel stehen Datendateien und ein R Script zur Verfügung, damit die Analyse schnell und unkompliziert nachvollzogen werden kann. Das Buch setzt Grundkenntnisse in R voraus und gibt ergänzende Literatur für die theoretischen Grundlagen und die Vertiefung für die fortgeschrittene Datenanalyse an. 

    Preis: 34.95 € | Versand*: 0 €
  • Wie kann die Effizienz im Vertrieb durch den Einsatz von Technologie und Datenanalyse verbessert werden?

    Durch den Einsatz von Technologie können Vertriebsmitarbeiter effizienter arbeiten, indem sie automatisierte Prozesse nutzen, um Zeit zu sparen und sich auf wichtige Aufgaben zu konzentrieren. Datenanalyse ermöglicht es, Kundenbedürfnisse und -verhalten besser zu verstehen, um maßgeschneiderte Angebote zu erstellen und den Vertriebserfolg zu steigern. Die Nutzung von CRM-Systemen ermöglicht es, Kundenkontakte zu verwalten und den Vertriebsprozess zu optimieren. Durch die Integration von Technologie und Datenanalyse können Vertriebsmitarbeiter fundierte Entscheidungen treffen und ihre Leistung kontinuierlich verbessern.

  • Was sind die verschiedenen Einsatzmöglichkeiten von Segmentierungstechniken in der Datenanalyse?

    Segmentierungstechniken können verwendet werden, um Kunden in verschiedene Gruppen zu unterteilen und gezielte Marketingstrategien zu entwickeln. Sie können auch genutzt werden, um Trends und Muster in großen Datensätzen zu identifizieren und fundierte Entscheidungen zu treffen. Darüber hinaus ermöglichen sie eine personalisierte Kundenansprache und verbessern die Effizienz von Marketingkampagnen.

  • Was sind die Vorteile von Clustering-Algorithmen in der Datenanalyse?

    Clustering-Algorithmen helfen dabei, Muster und Strukturen in großen Datensätzen zu identifizieren, ohne dass vorherige Annahmen über die Daten gemacht werden müssen. Sie ermöglichen eine automatisierte Gruppierung von Datenpunkten basierend auf deren Ähnlichkeiten. Durch Clustering können komplexe Daten vereinfacht und interpretiert werden, was zu einer besseren Entscheidungsfindung führt.

  • Wie können Spreadsheets effektiv zur Datenanalyse und -verwaltung eingesetzt werden?

    Spreadsheets können zur Datenanalyse und -verwaltung effektiv eingesetzt werden, indem Daten in Tabellen organisiert und analysiert werden. Durch die Verwendung von Formeln und Funktionen können Berechnungen automatisiert und Daten visualisiert werden. Zudem ermöglichen Spreadsheets die einfache Zusammenführung und Filterung von Daten aus verschiedenen Quellen.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.